YOLOv3 using Tensorflow 2.0
Implementation of YOLOv3 using Tensorflow 2.0
- Environment Setup
- Library Imports
- Configurations
- Utilities
- YOLO V3 Model
- YOLO Loss
- Tiny YOLO Inference
Kaggle Notebook Link: https://www.kaggle.com/soumikrakshit/yolo-v3-using-tensorflow-2-0
!pip install --upgrade tensorflow
!mkdir data
!wget wget https://pjreddie.com/media/files/yolov3.weights -O data/yolov3.weights
!wget https://pjreddie.com/media/files/yolov3-tiny.weights -O data/yolov3-tiny.weights
import numpy as np
import pandas as pd
import cv2, os, glob
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.layers import (
Add, Concatenate, Conv2D,
Input, Lambda, LeakyReLU,
MaxPool2D, UpSampling2D, ZeroPadding2D
)
from tensorflow.keras.regularizers import l2
from tensorflow.keras.losses import (
binary_crossentropy,
sparse_categorical_crossentropy
)
from tensorflow.keras.utils import plot_model
YOLOV3_LAYER_LIST = [
'yolo_darknet',
'yolo_conv_0',
'yolo_output_0',
'yolo_conv_1',
'yolo_output_1',
'yolo_conv_2',
'yolo_output_2',
]
YOLOV3_TINY_LAYER_LIST = [
'yolo_darknet',
'yolo_conv_0',
'yolo_output_0',
'yolo_conv_1',
'yolo_output_1',
]
yolo_anchors = np.array([
(10, 13), (16, 30), (33, 23), (30, 61), (62, 45),
(59, 119), (116, 90), (156, 198), (373, 326)],
np.float32) / 416
yolo_anchor_masks = np.array([[6, 7, 8], [3, 4, 5], [0, 1, 2]])
yolo_tiny_anchors = np.array([
(10, 14), (23, 27), (37, 58),
(81, 82), (135, 169), (344, 319)],
np.float32) / 416
yolo_tiny_anchor_masks = np.array([[3, 4, 5], [0, 1, 2]])
class_names = [
'person', 'bicycle','car','motorbike','aeroplane','bus','train','truck','boat',
'traffic light','fire hydrant','stop sign','parking meter','bench',
'bird','cat','dog','horse','sheep','cow','elephant','bear','zebra',
'giraffe','backpack','umbrella','handbag','tie','suitcase','frisbee',
'skis','snowboard','sports ball','kite','baseball bat','baseball glove',
'skateboard','surfboard','tennis racket','bottle','wine glass','cup',
'fork','knife','spoon','bowl','banana','apple','sandwich','orange',
'broccoli','carrot','hot dog','pizza','donut','cake','chair','sofa',
'pottedplant','bed','diningtable','toilet','tvmonitor','laptop','mouse',
'remote','keyboard','cell phone','microwave','oven','toaster','sink',
'refrigerator','book','clock','vase','scissors','teddy bear',
'hair drier','toothbrush'
]
def load_darknet_weights(model, weights_file, tiny = False):
wf = open(weights_file, 'rb')
major, minor, revision, seen, _ = np.fromfile(wf, dtype=np.int32, count=5)
if tiny:
layers = YOLOV3_TINY_LAYER_LIST
else:
layers = YOLOV3_LAYER_LIST
for layer_name in layers:
sub_model = model.get_layer(layer_name)
for i, layer in enumerate(sub_model.layers):
if not layer.name.startswith('conv2d'):
continue
batch_norm = None
if i + 1 < len(sub_model.layers) and sub_model.layers[i + 1].name.startswith('batch_norm'):
batch_norm = sub_model.layers[i + 1]
filters = layer.filters
size = layer.kernel_size[0]
in_dim = layer.input_shape[-1]
if batch_norm is None:
conv_bias = np.fromfile(wf, dtype=np.float32, count=filters)
else:
# darknet [beta, gamma, mean, variance]
bn_weights = np.fromfile(
wf, dtype=np.float32, count=4 * filters)
# tf [gamma, beta, mean, variance]
bn_weights = bn_weights.reshape((4, filters))[[1, 0, 2, 3]]
# darknet shape (out_dim, in_dim, height, width)
conv_shape = (filters, in_dim, size, size)
conv_weights = np.fromfile(
wf, dtype=np.float32, count=np.product(conv_shape))
# tf shape (height, width, in_dim, out_dim)
conv_weights = conv_weights.reshape(
conv_shape).transpose([2, 3, 1, 0])
if batch_norm is None:
layer.set_weights([conv_weights, conv_bias])
else:
layer.set_weights([conv_weights])
batch_norm.set_weights(bn_weights)
assert len(wf.read()) == 0, 'failed to read all data'
wf.close()
def broadcast_iou(box_1, box_2):
'''
box_1: (..., (x1, y1, x2, y2))
box_2: (N, (x1, y1, x2, y2))
'''
# broadcast boxes
box_1 = tf.expand_dims(box_1, -2)
box_2 = tf.expand_dims(box_2, 0)
# new_shape: (..., N, (x1, y1, x2, y2))
new_shape = tf.broadcast_dynamic_shape(tf.shape(box_1), tf.shape(box_2))
box_1 = tf.broadcast_to(box_1, new_shape)
box_2 = tf.broadcast_to(box_2, new_shape)
int_w = tf.maximum(tf.minimum(box_1[..., 2], box_2[..., 2]) - tf.maximum(box_1[..., 0], box_2[..., 0]), 0)
int_h = tf.maximum(tf.minimum(box_1[..., 3], box_2[..., 3]) - tf.maximum(box_1[..., 1], box_2[..., 1]), 0)
int_area = int_w * int_h
box_1_area = (box_1[..., 2] - box_1[..., 0]) * (box_1[..., 3] - box_1[..., 1])
box_2_area = (box_2[..., 2] - box_2[..., 0]) * (box_2[..., 3] - box_2[..., 1])
return int_area / (box_1_area + box_2_area - int_area)
def freeze_all(model, frozen = True):
model.trainable = not frozen
if isinstance(model, tf.keras.Model):
for l in model.layers:
freeze_all(l, frozen)
def draw_outputs(img, outputs, class_names):
boxes, objectness, classes, nums = outputs
boxes, objectness, classes, nums = boxes[0], objectness[0], classes[0], nums[0]
wh = np.flip(img.shape[0:2])
for i in range(nums):
x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32))
x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32))
img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 2)
img = cv2.putText(img, '{} {:.4f}'.format(
class_names[int(classes[i])], objectness[i]),
x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2)
return img
def draw_labels(x, y, class_names):
img = x.numpy()
boxes, classes = tf.split(y, (4, 1), axis = -1)
classes = classes[..., 0]
wh = np.flip(img.shape[0 : 2])
for i in range(len(boxes)):
x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32))
x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32))
img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 2)
img = cv2.putText(
img, class_names[classes[i]],
x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL,
8, (0, 0, 255), 2
)
return img
def transform_images(x_train, size):
x_train = tf.image.resize(x_train, (size, size))
x_train = x_train / 255
return x_train
@tf.function
def transform_targets_for_output(y_true, grid_size, anchor_idxs, classes):
N = tf.shape(y_true)[0]
y_true_out = tf.zeros(
(N, grid_size, grid_size, tf.shape(anchor_idxs)[0], 6))
anchor_idxs = tf.cast(anchor_idxs, tf.int32)
indexes = tf.TensorArray(tf.int32, 1, dynamic_size=True)
updates = tf.TensorArray(tf.float32, 1, dynamic_size=True)
idx = 0
for i in tf.range(N):
for j in tf.range(tf.shape(y_true)[1]):
if tf.equal(y_true[i][j][2], 0):
continue
anchor_eq = tf.equal(
anchor_idxs, tf.cast(y_true[i][j][5], tf.int32))
if tf.reduce_any(anchor_eq):
box = y_true[i][j][0:4]
box_xy = (y_true[i][j][0:2] + y_true[i][j][2:4]) / 2
anchor_idx = tf.cast(tf.where(anchor_eq), tf.int32)
grid_xy = tf.cast(box_xy // (1/grid_size), tf.int32)
indexes = indexes.write(
idx, [i, grid_xy[1], grid_xy[0], anchor_idx[0][0]])
updates = updates.write(
idx, [box[0], box[1], box[2], box[3], 1, y_true[i][j][4]])
idx += 1
return tf.tensor_scatter_nd_update(
y_true_out, indexes.stack(), updates.stack())
def transform_targets(y_train, anchors, anchor_masks, classes):
y_outs = []
grid_size = 13
anchors = tf.cast(anchors, tf.float32)
anchor_area = anchors[..., 0] * anchors[..., 1]
box_wh = y_train[..., 2:4] - y_train[..., 0:2]
box_wh = tf.tile(tf.expand_dims(box_wh, -2), (1, 1, tf.shape(anchors)[0], 1))
box_area = box_wh[..., 0] * box_wh[..., 1]
intersection = tf.minimum(box_wh[..., 0], anchors[..., 0]) * tf.minimum(box_wh[..., 1], anchors[..., 1])
iou = intersection / (box_area + anchor_area - intersection)
anchor_idx = tf.cast(tf.argmax(iou, axis=-1), tf.float32)
anchor_idx = tf.expand_dims(anchor_idx, axis=-1)
y_train = tf.concat([y_train, anchor_idx], axis=-1)
for anchor_idxs in anchor_masks:
y_outs.append(transform_targets_for_output(
y_train, grid_size, anchor_idxs, classes))
grid_size *= 2
return tuple(y_outs)
class BatchNormalization(tf.keras.layers.BatchNormalization):
def call(self, x, training = False):
if training is None:
traininig = tf.constant(False)
training = tf.logical_and(training, self.trainable)
return super().call(x, training)
def DarknetConv(x, filters, size, strides=1, batch_norm=True):
if strides == 1:
padding = 'same'
else:
x = ZeroPadding2D(((1, 0), (1, 0)))(x) # top left half-padding
padding = 'valid'
x = Conv2D(filters=filters, kernel_size=size,
strides=strides, padding=padding,
use_bias=not batch_norm, kernel_regularizer=l2(0.0005))(x)
if batch_norm:
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.1)(x)
return x
def DarknetResidual(x, filters):
prev = x
x = DarknetConv(x, filters // 2, 1)
x = DarknetConv(x, filters, 3)
x = Add()([prev, x])
return x
def DarknetBlock(x, filters, blocks):
x = DarknetConv(x, filters, 3, strides=2)
for _ in range(blocks):
x = DarknetResidual(x, filters)
return x
def Darknet(name=None):
x = inputs = Input([None, None, 3])
x = DarknetConv(x, 32, 3)
x = DarknetBlock(x, 64, 1)
x = DarknetBlock(x, 128, 2) # skip connection
x = x_36 = DarknetBlock(x, 256, 8) # skip connection
x = x_61 = DarknetBlock(x, 512, 8)
x = DarknetBlock(x, 1024, 4)
return tf.keras.Model(inputs, (x_36, x_61, x), name=name)
def DarknetTiny(name=None):
x = inputs = Input([None, None, 3])
x = DarknetConv(x, 16, 3)
x = MaxPool2D(2, 2, 'same')(x)
x = DarknetConv(x, 32, 3)
x = MaxPool2D(2, 2, 'same')(x)
x = DarknetConv(x, 64, 3)
x = MaxPool2D(2, 2, 'same')(x)
x = DarknetConv(x, 128, 3)
x = MaxPool2D(2, 2, 'same')(x)
x = x_8 = DarknetConv(x, 256, 3) # skip connection
x = MaxPool2D(2, 2, 'same')(x)
x = DarknetConv(x, 512, 3)
x = MaxPool2D(2, 1, 'same')(x)
x = DarknetConv(x, 1024, 3)
return tf.keras.Model(inputs, (x_8, x), name=name)
def YoloConv(filters, name=None):
def yolo_conv(x_in):
if isinstance(x_in, tuple):
inputs = Input(x_in[0].shape[1:]), Input(x_in[1].shape[1:])
x, x_skip = inputs
# concat with skip connection
x = DarknetConv(x, filters, 1)
x = UpSampling2D(2)(x)
x = Concatenate()([x, x_skip])
else:
x = inputs = Input(x_in.shape[1:])
x = DarknetConv(x, filters, 1)
x = DarknetConv(x, filters * 2, 3)
x = DarknetConv(x, filters, 1)
x = DarknetConv(x, filters * 2, 3)
x = DarknetConv(x, filters, 1)
return Model(inputs, x, name=name)(x_in)
return yolo_conv
def YoloConvTiny(filters, name=None):
def yolo_conv(x_in):
if isinstance(x_in, tuple):
inputs = Input(x_in[0].shape[1:]), Input(x_in[1].shape[1:])
x, x_skip = inputs
# concat with skip connection
x = DarknetConv(x, filters, 1)
x = UpSampling2D(2)(x)
x = Concatenate()([x, x_skip])
else:
x = inputs = Input(x_in.shape[1:])
x = DarknetConv(x, filters, 1)
return Model(inputs, x, name=name)(x_in)
return yolo_conv
def YoloOutput(filters, anchors, classes, name=None):
def yolo_output(x_in):
x = inputs = Input(x_in.shape[1:])
x = DarknetConv(x, filters * 2, 3)
x = DarknetConv(x, anchors * (classes + 5), 1, batch_norm=False)
x = Lambda(lambda x: tf.reshape(x, (-1, tf.shape(x)[1], tf.shape(x)[2], anchors, classes + 5)))(x)
return tf.keras.Model(inputs, x, name=name)(x_in)
return yolo_output
def yolo_boxes(pred, anchors, classes):
'''pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...classes))'''
grid_size = tf.shape(pred)[1]
box_xy, box_wh, objectness, class_probs = tf.split(
pred, (2, 2, 1, classes), axis=-1)
box_xy = tf.sigmoid(box_xy)
objectness = tf.sigmoid(objectness)
class_probs = tf.sigmoid(class_probs)
pred_box = tf.concat((box_xy, box_wh), axis=-1) # original xywh for loss
grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2]
box_xy = (box_xy + tf.cast(grid, tf.float32)) / \
tf.cast(grid_size, tf.float32)
box_wh = tf.exp(box_wh) * anchors
box_x1y1 = box_xy - box_wh / 2
box_x2y2 = box_xy + box_wh / 2
bbox = tf.concat([box_x1y1, box_x2y2], axis=-1)
return bbox, objectness, class_probs, pred_box
def yolo_nms(outputs, anchors, masks, classes):
'''boxes, conf, type'''
b, c, t = [], [], []
for o in outputs:
b.append(tf.reshape(o[0], (tf.shape(o[0])[0], -1, tf.shape(o[0])[-1])))
c.append(tf.reshape(o[1], (tf.shape(o[1])[0], -1, tf.shape(o[1])[-1])))
t.append(tf.reshape(o[2], (tf.shape(o[2])[0], -1, tf.shape(o[2])[-1])))
bbox = tf.concat(b, axis=1)
confidence = tf.concat(c, axis=1)
class_probs = tf.concat(t, axis=1)
scores = confidence * class_probs
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(bbox, (tf.shape(bbox)[0], -1, 1, 4)),
scores=tf.reshape(
scores,
(tf.shape(scores)[0], -1, tf.shape(scores)[-1])
),
max_output_size_per_class=100,
max_total_size = 100,
iou_threshold = 0.5,
score_threshold = 0.5
)
return boxes, scores, classes, valid_detections
def YoloV3(size=None, channels=3, anchors=yolo_anchors, masks=yolo_anchor_masks, classes=80, training=False):
x = inputs = Input([size, size, channels])
x_36, x_61, x = Darknet(name='yolo_darknet')(x)
x = YoloConv(512, name='yolo_conv_0')(x)
output_0 = YoloOutput(512, len(masks[0]), classes, name='yolo_output_0')(x)
x = YoloConv(256, name='yolo_conv_1')((x, x_61))
output_1 = YoloOutput(256, len(masks[1]), classes, name='yolo_output_1')(x)
x = YoloConv(128, name='yolo_conv_2')((x, x_36))
output_2 = YoloOutput(128, len(masks[2]), classes, name='yolo_output_2')(x)
if training:
return Model(inputs, (output_0, output_1, output_2), name='yolov3')
boxes_0 = Lambda(lambda x: yolo_boxes(x, anchors[masks[0]], classes),
name='yolo_boxes_0')(output_0)
boxes_1 = Lambda(lambda x: yolo_boxes(x, anchors[masks[1]], classes),
name='yolo_boxes_1')(output_1)
boxes_2 = Lambda(lambda x: yolo_boxes(x, anchors[masks[2]], classes),
name='yolo_boxes_2')(output_2)
outputs = Lambda(lambda x: yolo_nms(x, anchors, masks, classes),
name='yolo_nms')((boxes_0[:3], boxes_1[:3], boxes_2[:3]))
return Model(inputs, outputs, name='yolov3')
def YoloV3Tiny(size=None, channels=3, anchors=yolo_tiny_anchors, masks=yolo_tiny_anchor_masks, classes=80, training=False):
x = inputs = Input([size, size, channels])
x_8, x = DarknetTiny(name='yolo_darknet')(x)
x = YoloConvTiny(256, name='yolo_conv_0')(x)
output_0 = YoloOutput(256, len(masks[0]), classes, name='yolo_output_0')(x)
x = YoloConvTiny(128, name='yolo_conv_1')((x, x_8))
output_1 = YoloOutput(128, len(masks[1]), classes, name='yolo_output_1')(x)
if training:
return Model(inputs, (output_0, output_1), name='yolov3')
boxes_0 = Lambda(lambda x: yolo_boxes(x, anchors[masks[0]], classes),
name='yolo_boxes_0')(output_0)
boxes_1 = Lambda(lambda x: yolo_boxes(x, anchors[masks[1]], classes),
name='yolo_boxes_1')(output_1)
outputs = Lambda(lambda x: yolo_nms(x, anchors, masks, classes),
name='yolo_nms')((boxes_0[:3], boxes_1[:3]))
return Model(inputs, outputs, name='yolov3_tiny')
def YoloLoss(anchors, classes=80, ignore_thresh=0.5):
def yolo_loss(y_true, y_pred):
# 1. transform all pred outputs
# y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls))
pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes(y_pred, anchors, classes)
pred_xy = pred_xywh[..., 0:2]
pred_wh = pred_xywh[..., 2:4]
# 2. transform all true outputs
# y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls))
true_box, true_obj, true_class_idx = tf.split(
y_true, (4, 1, 1), axis=-1)
true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
true_wh = true_box[..., 2:4] - true_box[..., 0:2]
# give higher weights to small boxes
box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]
# 3. inverting the pred box equations
grid_size = tf.shape(y_true)[1]
grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
true_xy = true_xy * tf.cast(grid_size, tf.float32) - \
tf.cast(grid, tf.float32)
true_wh = tf.math.log(true_wh / anchors)
true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh), true_wh)
# 4. calculate all masks
obj_mask = tf.squeeze(true_obj, -1)
# ignore false positive when iou is over threshold
true_box_flat = tf.boolean_mask(true_box, tf.cast(obj_mask, tf.bool))
best_iou = tf.reduce_max(broadcast_iou(
pred_box, true_box_flat), axis=-1)
ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)
# 5. calculate all losses
xy_loss = obj_mask * box_loss_scale * \
tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)
wh_loss = obj_mask * box_loss_scale * \
tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
obj_loss = binary_crossentropy(true_obj, pred_obj)
obj_loss = obj_mask * obj_loss + \
(1 - obj_mask) * ignore_mask * obj_loss
# Could also use binary_crossentropy instead
class_loss = obj_mask * sparse_categorical_crossentropy(
true_class_idx, pred_class)
# 6. sum over (batch, gridx, gridy, anchors) => (batch, 1)
xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))
return xy_loss + wh_loss + obj_loss + class_loss
return yolo_loss
yolo = YoloV3(classes = 80)
yolo.summary()
plot_model(
yolo, rankdir = 'TB',
to_file = 'yolo_model.png',
show_shapes = False,
show_layer_names = True,
expand_nested = True
)
load_darknet_weights(yolo, './data/yolov3.weights', False)
def predict(image_file, visualize = True, figsize = (16, 16)):
img = tf.image.decode_image(open(image_file, 'rb').read(), channels=3)
img = tf.expand_dims(img, 0)
img = transform_images(img, 416)
boxes, scores, classes, nums = yolo.predict(img)
img = cv2.cvtColor(cv2.imread(image_file), cv2.COLOR_BGR2RGB)
img = draw_outputs(img, (boxes, scores, classes, nums), class_names)
if visualize:
fig, axes = plt.subplots(figsize = figsize)
plt.imshow(img)
plt.show()
return boxes, scores, classes, nums
image_file = glob.glob('../input/google-ai-open-images-object-detection-track/test/challenge2018_test/*')
len(image_file)
boxes, scores, classes, nums = predict(image_file[0], figsize = (20, 20))
boxes, scores, classes, nums = predict(image_file[1], figsize = (20, 20))
boxes, scores, classes, nums = predict(image_file[3], figsize = (20, 20))
boxes, scores, classes, nums = predict(image_file[4], figsize = (20, 20))
boxes, scores, classes, nums = predict(image_file[8], figsize = (20, 20))
boxes, scores, classes, nums = predict(image_file[12], figsize = (20, 20))
boxes, scores, classes, nums = predict(image_file[13], figsize = (20, 20))
boxes, scores, classes, nums = predict(image_file[15], figsize = (20, 20))
boxes, scores, classes, nums = predict(image_file[18], figsize = (20, 20))