LLM Judge for Entity Recognition Guardrail
RestrictedTermsAnalysis
Bases: BaseModel
Analysis result for restricted terms detection
Source code in safeguards/guardrails/entity_recognition/llm_judge_entity_recognition_guardrail.py
RestrictedTermsJudge
Bases: Guardrail
A class to detect and analyze restricted terms and their variations in text using an LLM model.
The RestrictedTermsJudge class extends the Guardrail class and utilizes an OpenAIModel to identify restricted terms and their variations within a given text. It provides functionality to format prompts for the LLM, predict restricted terms, and optionally anonymize detected terms in the text.
Using RestrictedTermsJudge
from guardrails_genie.guardrails.entity_recognition import RestrictedTermsJudge
# Initialize with OpenAI model
guardrail = RestrictedTermsJudge(should_anonymize=True)
# Check for specific terms
result = guardrail.guard(
text="Let's implement features like Salesforce",
custom_terms=["Salesforce", "Oracle", "AWS"]
)
Attributes:
Name | Type | Description |
---|---|---|
llm_model |
OpenAIModel
|
An instance of OpenAIModel used for predictions. |
should_anonymize |
bool
|
A flag indicating whether detected terms should be anonymized. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
should_anonymize
|
bool
|
A flag indicating whether detected terms should be anonymized. |
False
|
Source code in safeguards/guardrails/entity_recognition/llm_judge_entity_recognition_guardrail.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
guard(text, custom_terms=['Microsoft', 'Amazon Web Services', 'Facebook', 'Meta', 'Google', 'Salesforce', 'Oracle'], aggregate_redaction=True, **kwargs)
Analyzes the provided text to identify and handle restricted terms and their variations.
This function utilizes a predictive model to scan the input text for any occurrences of specified restricted terms, including their variations such as misspellings, abbreviations, and case differences. It returns a detailed analysis of the findings, including whether restricted terms were detected, a summary of the matches, and an optional anonymized version of the text.
The function operates by first calling the predict
method to perform the analysis based on
the given text and custom terms. If restricted terms are found, it constructs a summary of
these findings. Additionally, if anonymization is enabled, it replaces detected terms in the
text with a redacted placeholder or a specific match type indicator, depending on the
aggregate_redaction
flag.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
The text to be analyzed for restricted terms. |
required |
custom_terms
|
List[str]
|
A list of restricted terms to check against the text. Defaults to a predefined list of company names. |
['Microsoft', 'Amazon Web Services', 'Facebook', 'Meta', 'Google', 'Salesforce', 'Oracle']
|
aggregate_redaction
|
bool
|
Determines the anonymization strategy. If True, all matches are replaced with "[redacted]". If False, matches are replaced with their match type in uppercase. |
True
|
Returns:
Name | Type | Description |
---|---|---|
RestrictedTermsRecognitionResponse |
RestrictedTermsRecognitionResponse
|
An object containing the results of the analysis, including whether restricted terms were found, a dictionary of detected entities, a summary explanation, and the anonymized text if applicable. |
Source code in safeguards/guardrails/entity_recognition/llm_judge_entity_recognition_guardrail.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
TermMatch
Bases: BaseModel
Represents a matched term and its variations