Skip to content

Entity Recognition Guardrails

A collection of guardrails for detecting and anonymizing various types of entities in text, including PII (Personally Identifiable Information), restricted terms, and custom entities.

Available Guardrails

1. Regex Entity Recognition

Simple pattern-based entity detection using regular expressions.

from safeguards.guardrails.entity_recognition import RegexEntityRecognitionGuardrail

# Initialize with default PII patterns
guardrail = RegexEntityRecognitionGuardrail(should_anonymize=True)

# Or with custom patterns
custom_patterns = {
    "employee_id": r"EMP\d{6}",
    "project_code": r"PRJ-[A-Z]{2}-\d{4}"
}
guardrail = RegexEntityRecognitionGuardrail(patterns=custom_patterns, should_anonymize=True)

2. Presidio Entity Recognition

Advanced entity detection using Microsoft's Presidio analyzer.

from safeguards.guardrails.entity_recognition import PresidioEntityRecognitionGuardrail

# Initialize with default entities
guardrail = PresidioEntityRecognitionGuardrail(should_anonymize=True)

# Or with specific entities
selected_entities = ["CREDIT_CARD", "US_SSN", "EMAIL_ADDRESS"]
guardrail = PresidioEntityRecognitionGuardrail(
    selected_entities=selected_entities,
    should_anonymize=True
)

3. Transformers Entity Recognition

Entity detection using transformer-based models.

from safeguards.guardrails.entity_recognition import TransformersEntityRecognitionGuardrail

# Initialize with default model
guardrail = TransformersEntityRecognitionGuardrail(should_anonymize=True)

# Or with specific model and entities
guardrail = TransformersEntityRecognitionGuardrail(
    model_name="iiiorg/piiranha-v1-detect-personal-information",
    selected_entities=["GIVENNAME", "SURNAME", "EMAIL"],
    should_anonymize=True
)

4. LLM Judge for Restricted Terms

Advanced detection of restricted terms, competitor mentions, and brand protection using LLMs.

from safeguards.guardrails.entity_recognition import RestrictedTermsJudge

# Initialize with OpenAI model
guardrail = RestrictedTermsJudge(should_anonymize=True)

# Check for specific terms
result = guardrail.guard(
    text="Let's implement features like Salesforce",
    custom_terms=["Salesforce", "Oracle", "AWS"]
)

Usage

All guardrails follow a consistent interface:

# Initialize a guardrail
guardrail = RegexEntityRecognitionGuardrail(should_anonymize=True)

# Check text for entities
result = guardrail.guard("Hello, my email is john@example.com")

# Access results
print(f"Contains entities: {result.contains_entities}")
print(f"Detected entities: {result.detected_entities}")
print(f"Explanation: {result.explanation}")
print(f"Anonymized text: {result.anonymized_text}")

Evaluation Tools

The module includes comprehensive evaluation tools and test cases:

  • pii_examples/: Test cases for PII detection
  • banned_terms_examples/: Test cases for restricted terms
  • Benchmark scripts for evaluating model performance

Running Evaluations

# PII Detection Benchmark
from safeguards.guardrails.entity_recognition.pii_examples.pii_benchmark import main
main()

# (TODO): Restricted Terms Testing
from safeguards.guardrails.entity_recognition.banned_terms_examples.banned_term_benchmark import main
main()

Features

  • Entity detection and anonymization
  • Support for multiple detection methods (regex, Presidio, transformers, LLMs)
  • Customizable entity types and patterns
  • Detailed explanations of detected entities
  • Comprehensive evaluation framework
  • Support for custom terms and patterns
  • Batch processing capabilities
  • Performance metrics and benchmarking

Response Format

All guardrails return responses with the following structure:

{
    "contains_entities": bool,
    "detected_entities": {
        "entity_type": ["detected_value_1", "detected_value_2"]
    },
    "explanation": str,
    "anonymized_text": Optional[str]
}